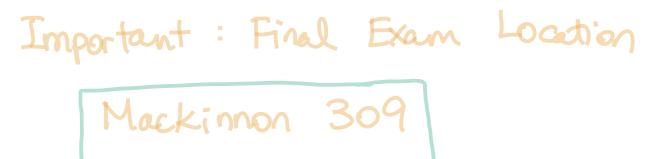
Lecture 20 (Final Exam Review)

Tuesday, November 26, 2024 11:32



cumulative, but with emphasis on second half

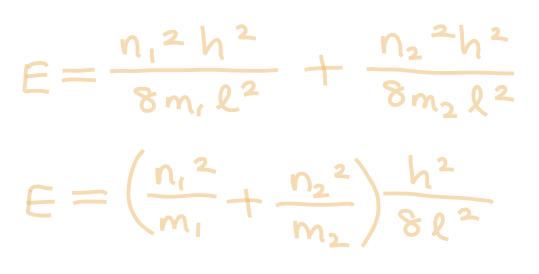
Practice Problems

1. For a system of two non-interacting particles of mass 9.0×10^{-26} g and 5.0×10^{-26} g in a one-dimensional box of length 1.00×10^{-8} cm, calculate the energies of the six lowest stationary states.

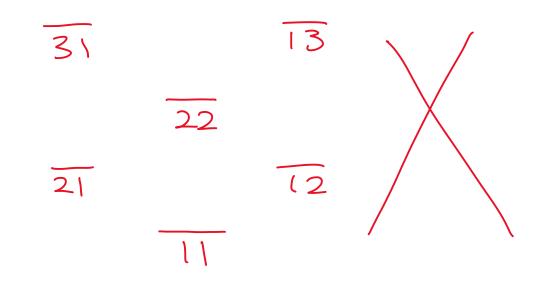
Solution :

 $\Psi = \Psi_1(x_1) \Psi_2(x_2)$

$E = E_1 + E_2$



Pit-falls :



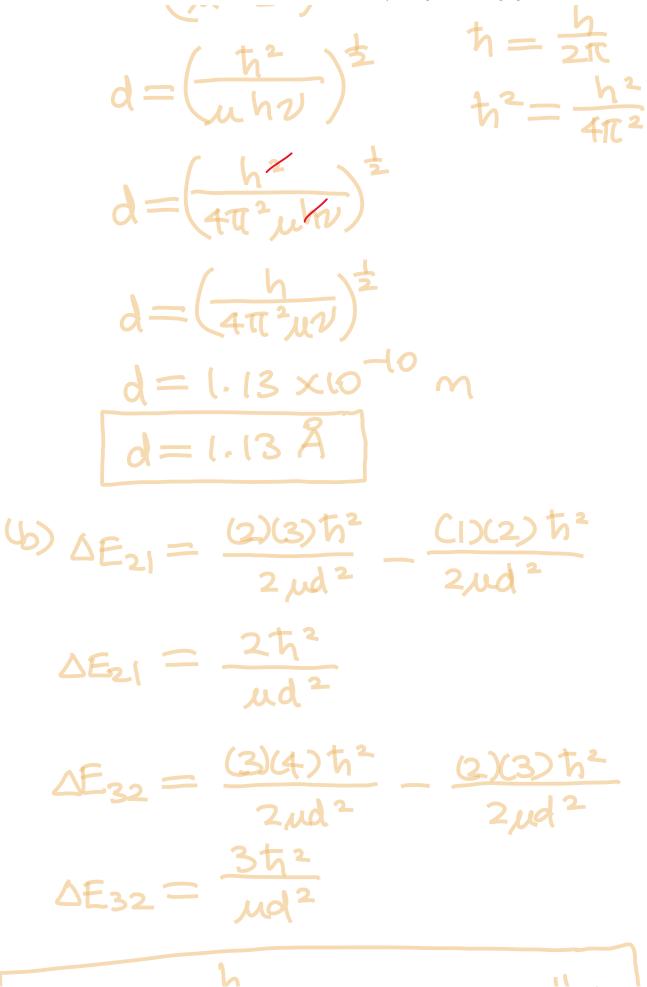
the first six states calculated are not the six lowest energy states $E_{11} = 1.71 \times 10^{-19} J$ $E_{21} = 3.54 \times 10^{-19} J$

 $E_{12} = 5.00 \times 10^{-19} \text{ J}$ $E_{31} = 6.59 \times 10^{-19} \text{ J}$ $E_{22} = 6.83 \times 10^{-19} \text{ J}$ $E_{32} = 9.88 \times 10^{-19} \text{ J}$

2. The lowest observed microwave absorption frequency of 12C160 is 115,271 MHZ. (a) Compute the bond distance in ¹²C¹⁶O. (b) Predict the next two lowest microwave absorption frequencies of 12C160 (c) Calculate the ratio of the J=1 population to the J=O population. Repeat for the J=2 to J=0 ratio. Don't forget degeneracy. Solution: microwave absorption->

27/11/2024, 10:11 Teams and Channels General University of Guelph lchen22@uoguelph.ca Microsoft Teams
J
rigid rotor model :
$E = \frac{J(J+1)h^2}{2\mu d^2}, J = 0, 1, 2,$
$E = \frac{1}{3} = 0.1.2$
2µa) ())
$m_{12C} = 12.000 \text{ g} \cdot \text{mol}^{-1}$
$M_{12} = 15 0.005 m m s^{-1}$
$m_{160} = 15.995 \text{ g} \cdot \text{mol}^{-1}$
$\mathcal{U} = \underbrace{m, m_2}_{m, m_2}$
$m_1 + m_2$
(a) Lowest Frequency transition:
J=0 to $J=/$
(1)
$\Delta F = \frac{(1)(2)h^{2}}{(0)(h)}$
$\Delta E = \frac{(1)(2)h^2}{2\mu d^2} - \frac{(0)(1)h^2}{2\mu d^2}$
-1
$\Delta E = \frac{Z h^2}{2(h^2)}$

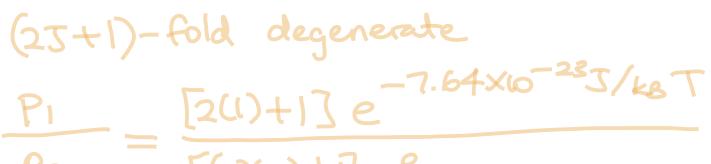
$$d = \left(\frac{h^2}{\mu\Delta E}\right)^{\frac{1}{2}}$$



 $v_{21} = \frac{1}{2\pi^2 \mu d^2} = 2.305 \times 10^{11}$ $32 = \frac{3h}{4\pi^2 \mu d^2} = 3.458 \times 10^{11} Hz$

(c)
$$p = gie^{-\epsilon i/k_BT}$$

Boltzmann population



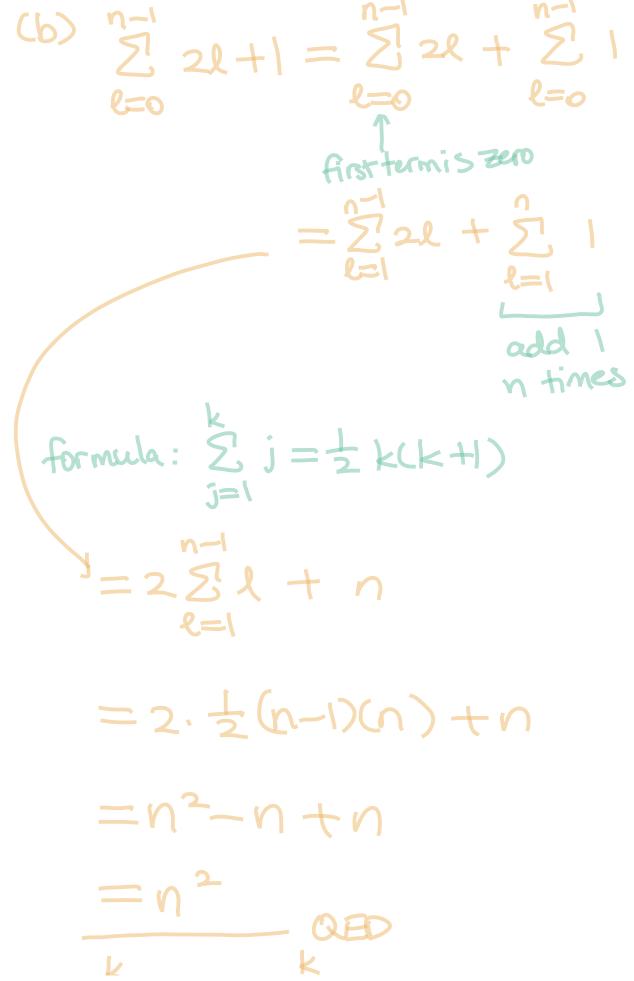
$$\frac{P_1}{P_0} = 2.94$$

 $\frac{P_2}{P_2} = \frac{[(2)(2) + 1]e^{-2.29 \times 10^{-22} \frac{3}{ksT}}}{2}$

$$\frac{P^2}{P_0} = 4.73$$

3. (a) Explain why the degree of
degeneracy of an H-atom energy
level is given by
$$\Sigma(2l+1)$$
.
(b) Break this sum into two sums.
Evaluate the first sum using the
fact that $\Sigma_{j} = \frac{1}{2} k(k+1)$. Show
that the degree of degeneracy of
the H-atom levels is n^2 with
spin omitted.
(c) Prove that $\Sigma_{j=1} j = \frac{1}{2} k(k+1)$.
Solution: (a) For a given quantum
number n in the H-atom, l ranges
from 0 to n-1.
e.g. $n=1$, $l=0$ is
 $n=2$, $l=0$, $l=2$, $2p$

$$n=3, l=0, 1, 2 \quad 3s, 3p, 3d$$
Then, for each l, m ranges from
-l to +l, including 0
(2l+1) m values for each l
e.g. l=0 \rightarrow m=0
l=1 \rightarrow m=-1, 0, +1
Px, Py, Pz
l=2 \rightarrow m=-2, -1, 0, +1, +2
dxy, dyz, dxz,
dx²-y², dz²
H- atom energies depend on n only.
Thus, the degeneracy is given
by $\sum_{r=0}^{r} 2l+1$.



$$= (1+2+3+\dots+k)$$

$$+ [k+(k-1)+(k-2)+\dots+1]$$

$$= (k+1)+(k-1+2)+(k-2+3)+\dots$$

$$= (k+1)+(k+1)+(k+1)+\dots$$

$$k \text{ terms}$$

$$= k(k+1)$$

$$\therefore \sum_{j=1}^{k} j = \frac{1}{2}k(k+1)$$

4. A stationary-state wave function is an eigenfunction of the Hamiltonian operator $\hat{H} = \hat{T} + \hat{V}$. It may be Line to state that \hat{V} is an

Teams and Channels | General | University of Guelph | lchen22@uoguelph.ca | Microsoft Teams Temping eigenfunction of T and V, but this is not correct. For the ground state of the hydrogen atom, verify directly that 4 is not an eigenfunction of T or of V, but is an eigenfunction of $\hat{T} + \hat{V}$.

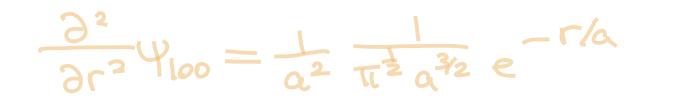
$$\Psi_{100} = \frac{1}{2^{3}\pi^{2}} e^{-r/a}$$

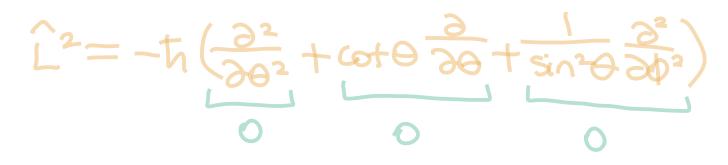
$$\hat{H} = -\frac{\hbar^2}{2\mu}\nabla^2 - \frac{e^2}{4\pi\epsilon_o r}$$

$$\hat{T} \qquad \hat{\nabla}$$

Solution: for the Laplacian in
spherical coordinates, we need
$$\frac{3}{3r}$$

and $\frac{3^2}{3r^2}$.





Ywo is not an eigenfunction of T.

$$\hat{V}\Psi_{100} = -\frac{e^2}{4\pi\epsilon_0\Gamma}\Psi_{100}$$

You is not an eigenfunction of \hat{V} . $a \equiv \frac{4\pi\epsilon_0 \hbar^2}{\pi\epsilon_0}$

t 2

$$\frac{1}{12024,10:1}$$
Teams and Channels I General University of Goldph I leher 22 Groups lept a 1 Microsoft Teams

$$\frac{1}{12} + \frac{1}{12} + \frac{1}{1200} + \frac{1}{200} + \frac{1}{200} + \frac{1}{2000} +$$