Lecture 1
Perfect Gas and van der Waals Equations of State

Lecture 2
The Kinetic Model

Lecture 3
Enthalpy Changes

Lecture 4
Internal Energy

Lecture 5
Heat Transactions

Lecture 6
State Functions and Exact Differentials

Lecture 7
Adiabatic Changes, Entropy

Lecture 8
The Carnot Cycle

Lecture 9
Entropy Changes

Lecture 10
Helmholtz and Gibbs Energies, Maxwell Relations

Lecture 12
Phase Diagrams of Pure Substances

Lecture 13
Phase Transitions

Lecture 14
Phase Boundaries, Mixing

Lecture 15
Solutions, Temperature-Compositions Diagrams

Lecture 16
Activities, Equilibria

Lecture 17
Chemical Kinetics

Lecture 18
Integrated Rate Laws

Lecture 19
Approach to Equilibrium, The Arrhenius Equation

Lecture 20
Reaction Mechanisms

Lecture 1
Historical Context of Quantum Mechanics

Lecture 2
The Time-Independent Schrödinger Equation

Lecture 3
The Particle in a One-Dimensional Box

Lecture 5
Eigenfunctions and Eigenvalues

Lecture 6
The Particle in a Three-Dimensional Box

Lecture 7
The Harmonic Oscillator

Lecture 8
Harmonic Oscillator Wavefunctions

Lecture 9
Commutators

Lecture 10
Angular Momentum

Lecture 13
Noninteracting Particles

Lecture 14
The Rigid Rotor

Lecture 15
The Hydrogen Atom

Lecture 16
Hermitian Operators

Lecture 17
Electron Spin